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Abstract: This paper introduces and solves a challenging logic puzzle inspired
by George Boolos’ “Hardest Logic Puzzle Ever”. The analysis hinges on a
characterization of questions in terms of the relevant knowledge which may be
gleaned from their answers.
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1 The Hardest Logic Puzzle Ever

In [1] George Boolos presents the following intriguing logic puzzle (together
with a solution). Boolos attributes the puzzle to Raymond Smullyan and dubs
it “The Hardest Logic Puzzle Ever”.

(HLPE) Three gods A, B, and C are called, in some order, True, False, and
Random. True always speaks truly, False always speaks falsely, but
whether Random speaks truly or falsely is a completely random
matter. Your task is to determine the identities of A, B, and C
by asking three yes-no questions; each question must be put to
exactly one god. The gods understand English, but will answer all
questions in their own language, in which the words for “yes” and
“no” are “da” and “ja”, in some order. You do not know which
word means which.

Boolos’ method of solution reveals that the puzzle contains uncoupled layers of
complexity that may be tackled independently. Once some god is known not to
be Random, the truth value of statement S may be determined from that god’s
answer to “Does ‘da’ mean true iff (you are True iff S)?” Accordingly, in the
HLPE-inspired puzzle I offer here, ‘da’ and ‘ja’ are eliminated in favor of simple
‘yes’ and ‘no’ answers, and only one species of nonrandom god is used. The
puzzle focuses on the problem of separating truthful gods from random gods.
This is similar to and yet, as we will see, distinctly different from the HLPE
‘layer’ handled by finding a god who does not answer randomly. Furthermore,
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to ratchet up the difficulty and inject an algorithmic analysis flavoring we will
not specify an allotment of questions, but rather make the determination of an
optimal strategy the heart of the puzzle.

2 The Random Logic Puzzle

Here’s the random logic puzzle.

(RLP) Two of four gods are called True, and the other two are called
Random. Each of the two called True always answer questions
truly. The responses of the two called Random are generated
randomly. Your task is to separate the Trues from the Randoms
by asking as few yes-no questions as necessary. Each question must
be addressed to exactly one god.

Although some clarification is in order, those puzzle enthusiasts who prefer to
attack problems without even a whiff of a hint may wish to set this paper aside
and take a crack at the RLP now.

3 Representing Solution Strategies

Boolos’ solution to the HLPE makes essential use of the freedom to choose the
second question’s addressee on the basis of the answer to the first question.
Indeed any solution to the HLPE must exploit this freedom. So a solution
strategy is inherently more flexible (and complicated) than a simple list of
questions. A strategy for the RLP may be modelled as a (finite) rooted binary
tree with a question and an addressee specified at each internal node, and a
partition of the gods into two pairs specified at each leaf. The root represents
the opening question, each internal right child represents the question to be
posed if the parent question has been answered affirmatively, and each internal
left child represents the question to be posed if the parent question has been
answered negatively. A strategy may be called successful if at each leaf there is
no assignment of names to gods which is consistent with all the answers leading
from the root to the leaf, but inconsistent with the partition given at the leaf.
The RLP’s task is to establish the minimum possible height of a successful
strategy.

Figure 1 illustrates an unsuccessful strategy which might fittingly be called the
naive strategy. The four gods have been labelled A, B, C and D arbitrarily.
Notice for example that the leaf at the end of a YES, YES answer sequence is
consistent with A and C as Randoms and B and D as Trues. Yet this naming
scheme is inconsistent with the partition {{A,B}, {C,D}} at the leaf.

4 Clarifications

In [3] Rabern and Rabern propose a solution to the HLPE using only two yes-no
questions. They argue that the question ‘Are you going to answer this question
with the word that means no in your language?’ can not be answered truthfully
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Ask A “Are you True?′′

Y ES

NO

Ask A “Is B True?′′

NO

Y ES
{{A,B}, {C,D}}

Ask A “Is C True?′′

Y ES

NO

{{A,C}, {B,D}}

{{A,D}, {B,C}}

Ask B “Are you True?′′
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NO

Ask B “Is C True?′′
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NO

{{A,D}, {B,C}}

{{A,C}, {B,D}}

{{A,B}, {C,D}}

b

b

b b

b

b b

b b

b

b

b

b

b b

b

b

b

b

b

b

Figure 1: An unsuccessful strategy

by True, and thus, if he is the addressee of this question his head must explode
revealing his identity. Notice that our model of a strategy implicitly precludes
such questions. Admissible questions can not have any outcome other than a
yes or no answer. (From here on this requirement on yes-no questions will be in
force not just in our treatment of the RLP, but also in our continuing discussion
of the HLPE.) Furthermore, it should be understood that

Each time one of the Randoms is asked a question, the response is deter-
mined at random independently of any prior responses from that god or
the other Random.

Each god knows his own identity as well as the identities of the other gods.

Once the gods have been separated into two pairs it is not required to
specify which pair is which, and

The gods are distinguishable in a manner that permits questions to ref-
erence a specific god or subset of the gods other than the addressee, and
enables the questioner (and the gods themselves) to know at all times
which god was addressed in any previous question, and which god(s) were
referenced. (This assumption was already applied in our use of the labels
A, B, C and D for the four gods.)
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Those readers who haven’t taken a crack at the puzzle yet are encouraged to do
so now.

5 Information Theoretic Bounds

Since there’s no limit to the number of questions which can be contrived, proving
the optimality of a strategy may appear to be a daunting task. In the case
of the HLPE, however, a simple information theoretic observation proves the
optimality of any correct three question strategy. In that puzzle there are six
possible assignments of names to gods that must be discriminated amongst.
The answers to two yes-no questions (two bits of information) can discriminate
among at most four cases. (cf. [2]) So what’s the information theoretic lower
bound on the number of questions required by the RLP? Since there are only
three ways to partition a set of four elements into two pairs, only two bits of
information are needed. Here, however, the simple information theoretic lower
bound can not be achieved. We’ll need a more careful accounting of what can
and can not be learned from arbitrary yes-no questions.

6 The Tree of Knowledge

Let’s track information by annotating each node in a strategy tree with the set
of assignments of names to gods which are consistent with the answers that lead
to the node. We’ll call this annotated tree the strategy’s tree of knowledge. (In
effect we’re characterizing each question by the relevant knowledge which may
be gleaned from its answer. This characterization transforms the unbounded
class of allowed questions into a finite, and thus readily analyzed, set.) Notice
that for a successful strategy tree, the annotation at each leaf must be a subset
(not necessarily proper) of the complementary pair of name assignments which
are consistent with the partition specified at the leaf.

Figure 2 shows the tree of knowledge for the unsuccessful naive strategy of Figure
1. The one leaf with a “correct” partition is marked with a X, the others with ✗.
Let’s adopt a shorthand for assignments of names to gods. A string with two ‘T’s
and two ‘R’s represents an assignment which gives the name True to A (resp. B,
C, D) if the first (resp. second, third, fourth) character in the string is ‘T’, and
gives the name Random to A (resp. B, C, D) if the first (resp. second, third,
fourth) character is ‘R’. Let U = {TTRR,TRTR,TRRT,RTTR,RTRT,RRTT}
be the collection of all possible assignments. This collection U decomposes into
three mutually disjoint pairs of complementary assignments {TTRR,RRTT},
{TRTR,RTRT} and {TRRT,RTTR} each of which corresponds to a possible
separation of the Randoms from the Trues. For convenience introduce the
following notation. Let N be the set of all nodes in a strategy’s knowledge
tree. At each node P ∈ N , k(P ) equals the subset of U stored at P . At each
internal node P , kl(P ) = k(P ’s left child) and kr(P ) = k(P ’s right child). So
in particular the tree of knowledge for any strategy satisfies k(root) = U . Also
we clearly have kl(P ) ⊆ k(P ) and kr(P ) ⊆ k(P ) at every internal node P .
Our assumption that any admissible question must result in a yes or no answer
yields kl(P )∪ kr(P ) = k(P ) for every internal node P . Now let’s partition each
collection k(P ) into kR(P ) and kT (P ) where kR(P ) contains the assignments in
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{TTRR, TRTR, TRRT,RTTR,RTRT,RRTT}
Ask A “Are you True?′′

Y ES {TTRR, TRTR, TRRT,RTTR,RTRT,RRTT}
Ask A “Is B True?′′

Y ES

NO

{TTRR,RTTR,RTRT,RRTT}
{{A,B}, {C,D}}✗

{TRTR, TRRT,RTTR,RTRT,RRTT}
Ask A “Is C True?′′

Y ES

{{A,C}, {B,D}}✗

{TRTR,RTTR,RTRT,RRTT}

{TRRT,RTTR,RTRT,RRTT}
{{A,D}, {B,C}}✗

NO

NO
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{RTTR,RTRT,RRTT}
Ask B “Are you True?′′

{RTTR,RTRT,RRTT}
Ask B “Is C True?′′

{RTTR,RRTT }

{RTRT,RRTT }

{{A,D}, {B,C}}✗

{{A,C}, {B,D}}✗

{RRTT }
{{A,B}, {C,D}}X
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b
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Figure 2: Naive strategy’s tree of knowledge

k(P ) which give the name Random to the addressee of the question at P , and
kT (P ) = k(P ) \ kR(P ) contains the assignments in k(P ) which give the name
True to the addressee at P . Since each Random may answer yes or no to any
question in any context, kR(P ) ⊆ kl(P ) and kR(P ) ⊆ kr(P ) at each internal
node P .
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7 Improving Lower bounds

The observations and notational conventions of the previous section prepare us
to prove

The Progress Speed Limit Lemma.
For each P ∈ N , max{|kl(P )|, |kr(P )|} > |k(P )| − 1.

In other words, there is never any question whose answer is guaranteed to enable
us to eliminate more than one possible naming scheme from consideration.

Proof. The collection U itself only has three assignments that give the name
True to any one god. So regardless of the addressee of the question at P ,
|kT (P )| must always be less than or equal to 3. The inclusion kT (P ) ⊆ k(P ) =
kl(P ) ∪ kr(P ) implies that kT (P ) \ kl(P ) and kT (P ) \ kr(P ) are disjoint. So
|(kT (P ) \ kl(P )) ∪ (kT (P ) \ kr(P ))| 6 |kT (P )| 6 3, and at least one of the two
sets kT (P ) \ kl(P ) and kT (P ) \ kr(P ) has size less than or equal to 1. Suppose
|kT (P ) \ kl(P )| 6 1. Then since kR(P ) ⊆ kl(P ) we know k(P ) \ kl(P ) =
kT (P ) \ kl(P ). Thus |k(P ) \ kl(P )| 6 1. So |kl(P )| ≥ |k(P )| − 1. Similarly, if
|kT (P ) \ kr(P )| 6 1, then |kr(P )| > |k(P )| − 1. �

As noted earlier, |k(root)| = |U | = 6. Since there are only two assignments of
names to gods compatible with each separation of the gods into pairs, for every
leaf in any successful strategy tree |k(leaf)| 6 2. It thus immediately follows
from the Progress Speed Limit Lemma that an optimal RLP strategy tree has
a height of at least four. In other words, there is no successful strategy that
never requires the use of more than three questions. Though this lower bound
improves upon the simple information theoretic lower bound of two, it still fails
to be tight. The following additional observation will show that a successful
RLP strategy tree must in fact have a height of at least five.

Lemma. If |k(P )| = 3 for some node P in a successful RLP strategy tree, then
P ’s children can’t both be leaves.

Proof. Given |k(P )| = 3, |kl(P )| and |kr(P )| can’t both be less than or equal
to 1 since kl(P ) ∪ kr(P ) = k(P ). Similarly, |kl(P )| = 2, |kr(P )| = 0 and
vice versa are impossible. Furthermore kl(P ) and kr(P ) cannot both consist of
complementary pairs. Since distinct complementary pairs are disjoint, if both
kl(P ) and kr(P ) were complementary pairs, then |k(P )| = |kl(P )∪kr(P )| would
be 2 or 4. Finally we need to consider (and dismiss) the possibility that one
of the sets kl(P ) and kr(P ) is a complementary pair and the other a singleton.
Suppose, for instance, kl(P ) = {TRRT,RTTR} and kr(P ) = {WXYZ}, where
WXYZ represents some element of U . If the addressee of the question at
P is B or C, then TRRT∈ kR(P ) ⊆ kr(P ) forces WXYZ=TRRT, which is
impossible. Similarly, if the addressee of the question at P is A or D, then
RTTR∈ kR(P ) ⊆ kr(P ) forces WXYZ=RTTR, which is also impossible. The
other permutations are perfectly analogous. �

From the preceding arguments and observations a successful strategy tree must
have some node P with |k(P )| = 3. This node must be at a depth of at least 3
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from the root. This node must also have some descendant with depth greater
by at least 2. So the height of a successful RLP strategy tree must be at least 5.
This time we’ve finally honed in on the answer. All that remains is to exhibit a
successful strategy with a tree of height exactly 5. (This result may be labelled
a theorem by any reader who feels the use of lemmas so demands.)

8 An Optimal Strategy

Though the construction of an optimal strategy leaves us with plenty of lati-
tude, it will be convenient to exploit the notation and structures we’ve already
introduced. Although the decomposition k(P ) = kR(P )∪kT (P ) depends on the
addressee of the question at P , note that k(P ) itself is determined by the part
of the strategy tree strictly above node P . So node P may be constructed from
k(P ). (This is even vacuously true at the root.) If there is some X from {A,
B, C, D} such that X is assigned the name True by more than one element of
k(P ) then clearly there is some Y from {A, B, C, D}\{X} such that X and Y
are both assigned True by one element, say α, of k(P ), while X and not Y are
assigned True by another element, say β, of k(P ). In this case let node P be an
internal node with the question “Is Y named True?” addressed to X . Otherwise,
let P be a leaf. Notice that when P is made into an internal node kr(P ) must
contain α and not β, while kl(P ) must contain β and not α. It follows both
that max{|kl(P )|, |kr(P )|} 6 |k(P )| − 1 and that kl(P ) and kr(P ) are both
nonempty. Thus any internal node P (for which |k(P )| is clearly greater than
or equal to 2) has depth at most four. So our construction yields a tree with
depth at most five, as claimed. For any leaf P there is no X in {A, B, C, D}
such that X is assigned the name True by more than one element of k(P ). This
implies that the nonempty set k(P ) is either a singleton or a complementary
pair. Either way the leaf P can be assigned a partition of {A, B, C, D} into
two pairs which is consistent with k(P ). This completes the construction of a
successful optimal strategy.

9 Exercises

Clearly the RLP may be viewed as a special case of the parametrized family of
similar puzzles with n Trues and m Randoms. Our original statement of the
RLP presumes the existence of a successful strategy. The interested reader is
invited to show that this presumption is justified whenever n > m, but does not
hold when m > n > 0. The final exercise left to the reader is to demonstrate
the claim made earlier that any solution to the HLPE must exploit the freedom
to choose the second question’s addressee on the basis of the answer to the first
question.
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