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Abstract: Andy Liu proposed a very interesting card trick whose explanation
is based in the well-known Hamming codes. In this work, a performance for the
same trick based in nim mental calculation, is presented. A similar idea is also
useful to analyze the game toe tack trick proposed by Colm Mulcahy.
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1 Introduction

We start with the principal purpose of this paper: a magical card trick. It uses
a small set of cards: ace through eight of clubs. The audience chooses one of
them, giving the information about the choice to a magician’s helper. Then,
one volunteer of the audience shuffles the eight card deck, places the cards in
a row, arbitrarily deciding which should be turned up. The helper does not do
anything and the magician is not in the room.

Following, the helper turns exactly one card. After all this, the magician, who
does not know what happened, enters the room and, looking at the cards, de-
termines the card chosen by the audience.

Consider the following example. The audience chooses the deuce and leaves the
following setup:
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Following, the helper turns the third position leaving the following row:

To finish the trick, the magician enters in the room and shouts “deuce of clubs!”.

2 Hamming Codes and the Liu’s Card Trick

In [3], it is shown how the trick is conceived using Hamming codes. A Hamming
code is a linear error-correcting code to detect single-bit errors. Exemplify-
ing, consider a 8-bit word a0a1a2a3a4a5a6a7. The codification of the message
includes 4 more digits (test-bits ti). The ti occupy the positions 1, 2, 4 and
8 (powers of 2). The values ti are test-bits chosen by solving the following 4
equations:

t0 + a0 + a1 + a3 + a4 + a6 ≡ 0 (mod 2) (1)

t1 + a0 + a2 + a3 + a5 + a6 ≡ 0 (mod 2) (2)

t2 + a1 + a2 + a3 + a7 ≡ 0 (mod 2) (3)

t3 + a4 + a5 + a6 + a7 ≡ 0 (mod 2) (4)

It is usual to organize the following chart related to the encoding process:

Bit Position 1 2 3 4 5 6 7 8 9 10 11 12
Encoded Bits t0 t1 a0 t2 a1 a2 a3 t3 a4 a5 a6 a7
Equation 1 × × × × × ×
Equation 2 × × × × × ×
Equation 3 × × × × ×
Equation 4 × × × × ×

To understand the concept behind the codification, we note that the 4 equations
can fail by 15 distinct ways (15 of the 16 subsets of a set with 4 elements). For
instance, the simultaneous failure of the 1st and the 4th is one of these possible
failures. The codification is done in such way that every single-bit error is related
to exactly one of the possible failures. From code theory, it is known that the
rules for the equations can be listed like this:

Eq 1: skip 0, check 1, skip 1, check 1, skip 1, . . . → positions 1, 3, 5, 7, 9, 11, 13, 15, . . .

Eq 2: skip 1, check 2, skip 2, check 2, skip 2, . . . → positions 2, 3, 6, 7, 10, 11, 14, 15, . . .

Eq 3: skip 3, check 4, skip 4, check 4, skip 4, . . . → positions 4, 5, 6, 7, 12, 13, 14, 15, . . .

Eq 4: skip 7, check 8, skip 8, check 8, skip 8, . . . → positions 8–15, 24–31, 40–47, . . .

(. . .)

Eq k: skip 2k − 1, check 2k, skip 2k, check 2k, skip 2k, . . .
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There is a unique bit coverage. For example, the bit responsible for the failure
of the equations 1 and 4 is the 9th bit (a4). The receptor of the message just
has to check the congruences (1), (2), (3), and (4) to determine the bits with
error.

Consider the message 10010111. The equations (1), (2), (3), and (4) produce the
Hamming code 101000110111. Imagine a single-bit error and the sent message
101001110111 (with an error in the 6th position). The receptor calculates the
congruences (1), (2), (3), and (4) and sees that (1) and (4) hold while (2) and
(3) fail. The error occurs in the 2nd and 3rd equations so, by table inspection,
the error-bit is in 6th bit. The detection of the error position can be made by
visual inspection of a table. There are 2k subsets of a finite set with cardinality
k, so, if the message length (k) is such that 2j 6 k < 2j+1 then the encoded
message needs j + 1 test-bits.

There are several card tricks based in the Hamming codes (see the chapter
“Hamming It Down” of [4]). Andy Liu’s idea is to prepare the magician’s recep-
tion. Card’s backs act like 1s and card’s faces act like 0s. In our example, the
trick’s victim leaves a configuration encoded by 10110010 and the helper wants
to “construct an error” in the second position (to inform the magician about
the chosen card, the deuce). First he should organize the following table:

Bit Position 1 2 3 4 5 6 7 8
Encoded Bits 1 0 1 1 0 0 1 0

Eq 1 × × × ×
Eq 2 × × × ×
Eq 3 × × × ×
Eq 4 ×

Then, checking the four congruences, the helper finds that only (1) fails. As
the helper wants just (2) to fail, he has to adjust (1) and (2). This can be
done flipping the third bit. With cards, the helper has to turn the third card.
The magician arrives and makes the same congruence calculations and table
inspection. In this communication scheme, t3 acts like neutral element. If the
magician, after inspection, sees that (2) and (4) fail, it is the same as if only (2)
fails. If the magician, after inspection, sees that nothing fails, it is the same as
if only (4) fails. This is not an easy process. We repeat,

this is not nice for the magician!

3 nim Approach

The main goal of this paper is to show how nim sum can help the assistant and
the magician to execute the trick.

The classic game of nim, first studied by C. Bouton [1], is played with piles of
stones. On his turn, each player can remove any number of stones from any pile.
Under Normal Play convention, the winner is the player who takes the last stone.
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The nim-sum of two nonnegative integers is the exclusive or (XOR), written ⊕,
of their binary representations. It can also be described as adding the numbers
in binary without carrying.

If a position is a previous player win, we say it is a P-position. If a game is a
next player win, we say it is a N-position. The set of P-positions is noted P and
the set of N-positions is noted N . Bouton proved that P is exactly the set of
positions such that the nim-sum of the sizes of the piles is zero.

The structure (N0,⊕) is an infinite group. It is very easy to execute mental
calculations with nim-sum. It is just needed to write the summands in binary
notation, canceling repetitions in pairs and using standard addition for the re-
maining powers. Some examples:

5⊕ 3 = (4 + 1)⊕ (2 + 1) = (4+ 6 1) + (2+ 6 1) = 6

11⊕ 22⊕ 35 = (8 + 2 + 1)⊕ (16 + 4 + 2)⊕ (32 + 2 + 1) =

= (8+ 6 2+ 6 1) + (16 + 4+ 6 2) + (32 + 2+ 6 1) = 62

The structures ({0, . . . , 2k−1},⊕) are finite groups with the property x⊕x = 0.
Following, the table for the case ({0, . . . , 15},⊕).

⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

For the “easy” implementation of the card trick it is important to prove the
following theorem:
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Theorem 1. Let {a0, a1 . . . , aj} ⊆ {0, . . . , 2k− 1}. For all N ∈ {0, . . . , 2k − 1},
one of the following holds:

1. ∃ i ∈ {0, . . . , j} : a0 ⊕ a1 ⊕ · · · ⊕ ai−1 ⊕ ai+1 ⊕ · · · ⊕ aj = N ;

2. ∃ b ∈ {0, . . . , 2k − 1} \ {a0, a1, . . . , aj} : a0 ⊕ a1 ⊕ · · · ⊕ aj ⊕ b = N .

Proof. The proof is a direct consequence of the property x ⊕ x = 0. We begin
to consider the equation

a0 ⊕ a1 ⊕ · · · ⊕ aj ⊕ x = N.

As the inverse of a number is itself, the solution of the equation is

x = N ⊕ a0 ⊕ a1 ⊕ · · · ⊕ aj .

If N ⊕ a0 ⊕ a1 ⊕ · · · ⊕ aj /∈ {a0, a1, . . . , aj} then 2 holds and

b = N ⊕ a0 ⊕ a1 ⊕ · · · ⊕ aj .

If N ⊕ a0 ⊕ a1 ⊕ · · · ⊕ aj ∈ {a0, a1, . . . , aj} then 1 holds and

ai = N ⊕ a0 ⊕ a1 ⊕ · · · ⊕ aj .

This theorem provides a very elegant communication between the helper and
the magician. Consider again our first example.

The audience chooses the deuce and leaves the following setup:

With the order 1, 2, . . . , 6, 7, 0 (0 corresponds to 8) and with the convention
On→Back and Off→Face, the helper calculates

x = 1⊕ 3⊕ 4⊕ 7︸ ︷︷ ︸
ai(Back)

⊕ 2︸︷︷︸
N

= 3.

In this case, x = 3. Because the third card is backward, the situation corre-
sponds to the first item of the Theorem 1. So, the helper turns the third card
giving the following setup to the magician:
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Now, the magician just calculates N = 1⊕4⊕7 = 2 and shouts “deuce of clubs!”

This is a much easier execution of the trick.

The trick has a nice geometric interpretation. In the first part of the card trick,
the victim gives a configuration to the helper and the information about a cho-
sen card N ∈ {0, . . . , 2k − 1}. We can associate each configuration to a graph’s
vertex. The helper’s move is to choose an adjacent vertex of the given configu-
ration. If we can define a function f : V (G) → {0, . . . , 2k − 1} over the set of
vertices such that the helper can always choose a move giving f(v) = N , the
trick is explained.

“Good” graphs are the hypercubes Ik = {0, 1}2k with 22
k

vertices (the vertices
are all the arrangements α1α2 . . . α2k−1α2k (αi ∈ {0, 1}). In those hypercubes,
each vertex has degree 2k. A function satisfying our goal is

f : Ik → {0, 1, . . . , 2k − 1} given by

f(α1α2 . . . α2k−1α2k) = α1 ⊕ 2α2 ⊕ 3α3 ⊕ · · · ⊕ (k − 1)α2k−1

We can visualize the geometric idea:

0011→→→→3

0111→→→→1

1111→→→→0

1110→→→→0

1100→→→→3

0110→→→→1

1101→→→→3

0101→→→→2

1011→→→→2

1001→→→→1

1010→→→→2

1000→→→→1

0100→→→→2

0010→→→→3

0001→→→→0

0000→→→→0

0→→→→0

00→→→→0 01→→→→0

10→→→→1 11→→→→1

0,1,2,3{{{{ }}}}

0,1{{{{ }}}}

0{{{{ }}}}

If we perform the trick with just 4 cards, the action on the hypercube is easy to
visualize. For instance, if the helper gets the configuration 1010 and wants to
inform the chosen card 3, he must chose the vertex 0010 (he turns the first card).

4 Colm Mulcahy’s toe tack trick

The knowledge about the structure (N0,⊕) gives a very practical way to deal
with Hamming codes. Suppose the message 10010111 and the related scheme:
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Bit Position 1 2 3 4 5 6 7 8 9 10 11 12
t0 t1 a0 t2 a1 a2 a3 t3 a4 a5 a6 a7

Encoded Bits ? ? 1 ? 0 0 1 ? 0 1 1 1

The procedure starts nim adding the positions of the ai = 1 (N). In this exam-
ple, N = 3⊕ 7⊕ 10⊕ 11⊕ 12 = 9. Because ({0, 1, . . . , 15},⊕) is a finite group,
it is mandatory that, for all possible messages with the considered length, N
is an element of {0, 1, . . . , 15}. After, the ti are chosen in such a way that the
nim-sum of the positions of 1’s is N . This is always possible because the ti’s
positions are the powers of 2 (in this case, 1, 2, 4 and 8). In fact, the ti are
chosen in such way that t3t2t1t0 is the binary expansion of N . In the example,
t3 = 1, t2 = 0, t1 = 0, and t0 = 1. The encoded message is 101000110111.

When the receptor receives the message, he calculates the nim-sum
⊕

pi (nim-
sum of the positions with digit 1). If the result is different than zero, an error
occurred. Say that

⊕
pi = x. The question is: what is the position where the

error occurred? That is, what is the value y such that
⊕

pi ⊕ y = 0? It is
possible to understand that x is the answer, revealing the position where the
error occurred. If x 6∈ {pi} then the element in position x is 0 and must be
replaced by 1. If x ∈ {pi} then the element in position x is 1 and must be
replaced by 0. The receptor just has to compute

⊕
pi to discover the position

x. Suppose that the error transforms the encoded message 101000110111 into
101000110101. The receptor calculates 1 ⊕ 3 ⊕ 7 ⊕ 8 ⊕ 10 ⊕ 12 = 11 and im-
mediately understands that the error was in the 11th position. The finite nim
groups provide an elegant explanation for the Hamming’s idea.

At Gathering for Gardner 9, Colm Mulcahy showed his toe tack trick. The
game starts with a an empty 3 × 3 grid as in the ordinary tic-tac-toe, but
in toe tack trick the grid is totally filled and the winner is the player who
finishes with the smallest number of three-in-row. In this version, both players
can use both symbols (“X” and “O”). However there is another important dif-
ference, in tic-tac-toe players can place the symbols where they want, but,
in toe tack trick, First can only play in the middle of each side and Second
can only play in the corners.

1st 1st

1st

1st

2nd

2nd

2nd

2nd
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During the first stage, First fills in all his four cells. After, during the second
stage, Second fills in all his corners. During a third and last stage, the center is
filled with “X” or “O”, depending of a coin toss.

A three-in-row counts for Second if the configuration ends in the corners (a side
or a diagonal). A three-in-row counts for First if the configuration ends in the
middle of the sides.

Suppose the final configuration:

O O

O O

OX

X

X

X

Each player has one three-in-row. The game results in a draw.

Mulcahy’s proposal is related, not to the game itself, but to a very interest-
ing communication situation. Suppose that the second player, fearing that
his opponent could be a cheater, prepares a communication scheme with a
good friend (Sherlock). Second knows that, after playing a game, First al-
ways cheats, switching exactly one symbol. In the previous example, suppose
that First changes the final grid to the following one:

O O

O O

OX

O

X

X

Sherlock, who has witnessed nothing, enters in the scene and comments “You,
First, are a cheater. You changed that mark in the top-left corner, winning the
game (1 − 2). Before the switch, you each had one three-in-row and the game
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was a draw.”.

How is this possible? Sherlock saw and heard nothing! Again, instead of Ham-
ming codes, we can explain everything with recourse to nim-sum. Consider the
following communication scheme:

a3
t3

t2 a0

0a1

t0

a2

t1

During the first stage of the game, Second saw the First’s choices:

0 (7th)

0 (3rd)

1 (5th) 1 (6th)

He calculated 5 ⊕ 6 = 3 and, because, in binary, 3 = 11, he made the choice
t3t2t1t0 = 0011:
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0

0

1 1

0

0

1

1

After the randomized central move and the “cheating switch”, Sherlock entered
in the room and observed the final configuration:

0

0

1 1

0

0

1

0

0

He calculated 2⊕ 5⊕ 6 = 1 and discovered that the first position was changed.
If the nim-sum was equal to 0, then the cheating switch should have been in the
center.

For more relations between Error-Correcting Codes and nim algebraic opera-
tions see [2]. This reference is concerned with various classes of lexicographic
codes, that is, codes that are defined by a greedy algorithm: each successive
codeword is selected as the first word not prohibitively near to earlier code-
words (in the sense of Hamming distance, the number of positions at which the
corresponding symbols are different). Among others, the authors proved a very
interesting theorem: for a base B = 22

a

, unrestricted lexicodes are closed under
nim addition and nim multiplication.
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